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EXTENSION OF AN ELASTIC SPACE WITH A RIGID BAR

UDC 539.3I. I. Argatov

An asymptotic model for deformation of an elastic space with a rigid thin reinforcing bar is con-
structed. The elastic modulus of the fiber far exceeds the elastic modulus of the matrix. The shape
optimization problem for the reinforcing bar is solved on the basis of the uniform strength condition.

Key words: elastic space, reinforcing bar, asymptotic model, uniform strength condition.

1. Formulation of the Problem. Let an elastic (with Young’s modulus E and Poisson’s ratio ν) space
contain an absolutely rigid, thin, cylindrical inclusion Qε = ωε × (−l, l) extended along the Ox3 axis. (The case of
an elastic inclusion of variable cross section is considered below.) Here ε is a small positive parameter and ωε is a
circle of radius

rε = εl. (1.1)

It is assumed that the elastic space is extended by a stress σ33 = σ applied at infinity.
This problem was studied by Nikoshkov and Cherepanov [1], who obtained an approximate analytical and

numerical solutions. Mirenkova and Sosnina [2] and Kachalovskaya and Ulitko [3] obtained asymptotic solutions
for the case of a rigid inclusion of ellipsoidal shape. A similar problem was solved by Phan-Thien [4]. In addition
to an ellipsoidal inclusion, Kanaun [5] (see also [6, § 4.3]) considered a cylindrical inclusion and an inclusion in the
shape of a tapered spindle. Using the method of [7], which was originally employed to solve the contact problem
of beam bending in an elastic half-space, Khait [8] obtained an approximate solution for the problem of an elastic
cylindrical inclusion An asymptotic solution of the heat-conduction problem was obtained by Fedoryuk [9] and
Mazya et al. [10]. Zorin and Nazarov [11, 12] constructed an asymptotic solution of the elastic problem for the case
of a absolutely rigid, toroidal inclusion.

In the present paper, we use the asymptotic method proposed by Argatov and Nazarov [13, 14]. A refined
asymptotic model is constructed using a modified joining procedure [15].

2. External Asymptotic Representation. The extension of an elastic space is described by the linear
displacement field

v0(x) = (σ/E)[−ν(x1e1 + x2e2) + x3e3]. (2.1)

By virtue of symmetry, the displacements of the points belonging to the surface of a rigid bar should be
zero. Hence, in the boundary conditions on the lateral surface of the bar Qε, the first two components of the vector
(2.1) yield the residual O(ε), and the third component the residual O(1).

The effect of the inclusion on the deformation of the matrix is determined in the main by tangential stresses
on its lateral surface; therefore, at a distance from the inclusion, the displacement field of the points of the elastic
space differs insignificantly from the field

v(p; x) = v0(x) +

l∫

−l

T (3)(x1, x2, x3 − s)p(s) ds. (2.2)
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Here p(s) is a function that characterizes the response of the bar; T (3)(x) is Kelvin solution of the problem of an
elastic space acted upon by a unit concentrated force oriented along the Ox3 axis, and (see, for example, [16, § 5.7])

T
(3)
k (x) =

1
M

(x3xk

|x|3 + (3 − 4ν)
δ3,k

|x|
)

(k = 1, 2, 3), M =
8πE(1 − ν)

1 + ν
. (2.3)

According to (2.3), the singular component of the vector (2.2) has the following components:

M

l∫

−l

T
(3)
k (y, z − s)p(s) ds = −ykI1

3 (p; y, z) (k = 1, 2); (2.4)

M

l∫

−l

T
(3)
3 (y, z − s)p(s) ds = 4(1 − ν)I0

1 (p; y, z) − |y|2I0
3 (p; y, z). (2.5)

Here

In
m(p; y, z) =

l∫

−l

(s − z)np(s) ds

[(s − z)2 + |y|2]m/2
.

For |y| = (y2
1 + y2

2)
1/2 → 0, the behavior of the vector function v(p; x) is determined by the following

asymptotic formulas, which are written under the assumption of smooth density p(z):

I1
3 (p; y, z) = O

(
C0

∑
±

1
l ± z

+ C1 ln
(√

l2 − z2

|y|
)

+ C2l
)
; (2.6)

I0
3 (p; y, z) =

2
|y|2 p(z) + O

(
C0

∑
±

1
(l ± z)2

+ C1

∑
±

1
l ± z

+ C2 ln
(√

l2 − z2

|y|
)

+ C3l
)
; (2.7)

I0
1 (p; y, z) = p(z)

[
− 2 ln

( |y|
2l

)
+ ln

(
1 − z2

l2

)]
+ (Jp)(z) + O

(
C1|y| + C0

∑
±

|y|2
(l ± z)2

)
. (2.8)

Here
Ci = max

z∈[−l,l]
p(i)(z) (i = 0, 1, 2).

The integral operator J acts according to the formula

(Jp)(z) =

l∫

−l

p(s) − p(z)
|z − s| ds. (2.9)

We note that for a fixed value of z ∈ (−l, l), only the third component v3(p; y, z) of the vector (2.2) is un-
bounded for |y| → 0 [see, in particular, relations (2.8) and (2.5)]. The main terms of the asymptotic representations
of integrals (2.4) and (2.5), which are defined by formulas (2.6)–(2.8), agree with the results of [4].

3. Plane Boundary Layer. In planes orthogonal to the bar axis, we introduce the extended coordinates

η = (η1, η2), ηi = ε−1yi. (3.1)

The approximate representation of the displacement field of the matrix near the inclusion is sought in the
form

V (η; z) = V3(η; z)e3. (3.2)

We substitute expression (3.2) into the Lamé equation and separate higher-order terms with respect to the pa-
rameter ε. Then, in the exterior of a closed circle ω1 of radius l, the function V3(η; z) should satisfy the Laplace
equation

μΔηV3(η; z) = 0, η ∈ R
2 \ ω1, (3.3)

where μ = E[2(1 + ν)]−1 is the shear modulus.
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In the case of an absolutely rigid bar, Eq. (3.3) is supplemented by the homogeneous boundary condition

V3(η; z) = 0, η ∈ ∂ω1. (3.4)

In problem (3.3), (3.4), the dependence on the extended variable z ∈ (−l, l) is parametric.
According to the method of joined asymptotic expansions (see, for example, [17, 18]), the asymptotic formulas

(2.5) and (2.8) define the logarithmic behavior of the function V3(η; z) as |η| → ∞.
The function

G∞(η) = − 1
2π

ln
( |η|

l

)
(3.5)

satisfies relations (3.3) and (3.4), and ∫

∂ω1

∂νG∞(η) dsη = 1. (3.6)

Here ∂ν = ν1(∂/∂η1) + ν2(∂/∂η2) is the derivative along the inward (with respect to the region ω1) unit normal
ν = (ν1, ν2) to the contour ∂ω1, and dsη is an element of the arc length.

We set

V3(η; z) = μ−1p(z)G∞(η). (3.7)

Then, the tangential stresses in the elastic space near the lateral surface of the bar Qε are calculated by the formulas

σi3(V ; y, z) = ε−1p(z)
∂G∞
∂ηi

(η) (i = 1, 2). (3.8)

From formulas (3.8) and (3.6), the resultant tangential stress σn3 = σ13n1 + σ23n2 normalized to the unit length of
the bar on an area with the inward (with respect to Qε) unit normal n = (n1, n2, 0), is equal to∫

∂ωε

σn3(V ; y, z) dsy = p(z).

From this formula, the mechanical meaning of the function p(z) is the density of linear tangential stresses exerted
on the matrix by the inclusion.

At the ends of the bar, the stress–strain state in the elastic matrix is substantially three-dimensional and is
not described by the constructed equations of plane boundary layer. Approaches to constructing the corresponding
three-dimensional boundary layers are considered in [5, 10].

4. Joining of the Internal and External Asymptotic Representations. Making the change of
variables (3.1) in representation (3.7) and using relations (3.5) and (1.1), we obtain

V3(ε−1y; z) = − 1
2πμ

p(z) ln
( |y|

rε

)
. (4.1)

At the same time, from formulas (2.7), (2.8), (2.5), and (2.2) for a fixed value of z ∈ (−l, l) and for |y| → 0 with
accuracy up to terms of order O(C|y|), we have

v3(p; y, z) = v0
3(0, z) − 2

M
p(z)

+
4(1 − ν)

M

{
p(z)

[
− 2 ln

( |y|
2l

)
+ ln

(
1 − z2

l2

)]
+ (Jp)(z)

}
+ . . . . (4.2)

We recall that the joining procedure consists of determining the relating between the functions p(z) and
v0
3(0, z) that leads to the asymptotic relation

v3(p; y, z) − V3(ε−1y; z) = o(1), |y|/l ∼ √
ε, ε → 0. (4.3)

The condition that the asymptotic external representation of the displacement field of the elastic space
written in expansion (4.2) coincides with its internal representation (4.1) leads to the equation

p(z)
[
2 ln

(2l

rε

)
− 1

2(1 − ν)
+ ln

(
1 − z2

l2

)]
+ (Jp)(z) = − 2πE

1 + ν
v0
3(0, z). (4.4)
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As is known, by virtue of the properties of the integral operator J [see formula (2.9)], the problem of seeking
the solution of the resultant equation (4.4) for small values of the parameter ε is an ill-posed problem [10, 19].
However, to construct the asymptotic representation of the solution of the original problem, it is sufficient to find
the approximate [accurate to within O(ε] solution of Eq. (4.4).

Remark 4.1. From [10, 19], it follows that Eq. (4.4) remains valid in the case of a bar Qε of variable thickness
with cross-sectional radius rε(z). Thus, for a thin ellipsoid of revolution with the maximum cross-sectional radius
rε(0) [see (1.1)], rε(z) = rε

√
1 − (z/l)2 and Eq. (4.4) is simplified to

Λεp(z) + (Jp)(z) = −2πσz/(1 + ν), (4.5)

where

Λε = 2 ln (2l/rε) − 1/[2(1 − ν)]. (4.6)

It is easy to verify that the solution of Eq. (4.5) is expressed by the formula

p(z) = − 2πσ

1 + ν

z

Λε − 2
. (4.7)

Remark 4.2. Equation (4.4) contains the large (at ε → 0) parameter Λε; therefore, it admits an asymptotic
solution in the form of the expansion [19]

p(z) = Λ−1
ε q0(z) + Λ−2

ε q1(z) + . . . . (4.8)

Substitution of expansion (4.8) into Eq. (4.4) yields

q0(z) = − 2πE

1 + ν
v0
3(0, z), qi(z) = −qi−1(z) ln

(
1 − z2

l2

)
− (Jqi−1)(z) (i = 1, 2, . . .). (4.9)

We note that the solution obtained in [4, 5] corresponds to the main term (4.9) of the logarithmic asymptotic
representation (4.8).

5. Equation for the Density p. In [15], a modified procedure was proposed to join the external (2.2) and
internal (3.2) asymptotic representations without using the asymptotic formulas (2.8) and (4.2), which contains the
integral operator J . Thus, according to relations (2.5) and (2.7), for |y| → 0, instead of the asymptotic expansion
(4.2), we have

v3(p; y, z) = v0
3(0, z) +

4(1 − ν)
M

I0
1 (p; y, z) − 2

M
p(z) + O

(
C

∑
±

|y|2
(l ± z)2

)
. (5.1)

Using the asymptotic formula (2.8), it is easy to show that the joining condition (4.3) is satisfied if, for |y| =
√

ε l, we
equate the expressions written in expansions (5.1) and (4.1). As a result, we have the following equation [compare
with (4.4)]:

Λp(z) + (Jεp)(z) = −2πEv0
3(0, z)/(1 + ν). (5.2)

Here

(Jεp)(z) =

l∫

−l

p(s) ds√
(z − s)2 + rεl

, Λ = ln
( l

rε

)
− 1

2(1 − ν)
. (5.3)

The theorem of unique solvability of Eq. (5.2) is proved in [15].
Remark 5.1. Equations (5.2) and (4.4) are also valid for the case of a cylindrical bar Qε with cross section

ωε of arbitrary shape (see also [14]). In this case, the quantity rε is equal to the external conformal radius of the
closed region ωε (see, for example, [20]).

6. Asymptotic Model for Deformation of a Rigid Fiber in an Elastic Matrix. We assume that
the bar Qε is made of an elastic material with elastic modulus Ej . The ratio Ej/E will be considered large. In the
absence of volume loads, the strain of the bar is described by the equation

EjSε
d2w

dz2
(z) = p(z), z ∈ (−l, l) (6.1)
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with the boundary conditions (the action of the extended matrix on the bar through its ends is ignored)

EjSε
dw

dz
(±l) = 0. (6.2)

Here Sε is the cross-sectional area ωε and w(z) is the displacement of the bar cross section with the coordinate z.
The equation relating the function w(z) to the response p(z) is derived using the method proposed in

[13, 14]. The assumption of complete compatibility of the fiber with the matrix corresponds to the boundary
condition V3(η; z) = w(z) for η ∈ ∂ω1 [compare with (3.4)]. This leads to the new expression for the nontrivial
component of the plane boundary layer [compare with (3.7)]:

V3(η; z) = μ−1p(z)G∞(η) + w(z). (6.3)

The joining of the external asymptotic representation (2.2) with the internal representation (3.2), (6.3) results in
the equation

p(z)[Λε + ln (1 − z2/l2)] + (Jp)(z) = 2πE[w(z) − v0
3(0, z)]/(1 + ν)

[the parameter Λε and the integral operator J are defined in (4.6) and (2.9)].
Using the modified joining procedure [15], we obtain the equation

Λp(z) + (Jεp)(z) = 2πE[w(z) − v0
3(0, z)]/(1 + ν) (6.4)

[the parameter Λ and the integral operator Jε are defined in (5.3)].
The results of numerical calculations using the asymptotic model (6.1), (6.2), (6.4) are compared with the

results of calculations [1] using the finite element method. The following parameters were calculated: the tangential
stress on the bar surface τ(z) and the stress averaged over the bar cross section σj(z):

τ(z) = − 1
2πrε

p(z), σj(z) =
1

πr2
ε

z∫

−l

p(s) ds.

The calculations were performed for ε = 0.01 and E/Ej = 10−4; 10−5. The difference between the obtained values
of τ(z) and σj(z) and the calculation results [1] is 5 and 14% respectively.

Possible methods of generalizing the mathematical model constructed for deformation of an elastic matrix
with a rigid bar are indicated in Remarks 4.1 and 5.1. The formulas obtained can be used to calculate the optimum
length of the reinforcing fiber of constant section (see also [1]).

7. Shape Optimization of the Reinforcing Bar Based on the Uniform Strength Condition. We
use the main term of the logarithmic asymptotic (4.8) and set

p(z) = − 1
Λ(z)

2πσ

1 + ν
z. (7.1)

Considering the bar radius r(z) variable, according to formula (4.6), we have

Λ(z) = 2 ln
( 2l

r(z)

)
− 1

2(1 − ν)
. (7.2)

It is assumed that max r(z) � l for |z| ≤ l.
We find the function r(z) from the uniform strength condition for the reinforcing bar. Denoting the admissible

stress by σ0, we obtain

1
πr2(z)

z∫

−l

p(s) ds = σ0, (7.3)

whence follows the relation

p(z) = 2πσ0r(z)r′(z). (7.4)

Substituting expression (7.4) into Eq. (7.1) and using (7.2), we obtain the equation

2πσ0

(
2 ln

(2l

r

)
− 1

2(1 − ν)

)
r

dr

dz
= − 2πσ

1 + ν
z.
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Dividing the variables and integrating, we have

r2(z)
(
2 ln

( 2l

r(z)

)
− 1

2(1 − ν)
+ 1

)
=

σ

(1 + ν)σ0
(l2 − z2). (7.5)

It should be noted that the integration constant in integral (7.5) is chosen so as to satisfy the boundary condition
r(±l) = 0, which follows from condition (7.3).

The main term of the logarithmic asymptotic representation of the solution of Eq. (7.5) defines the optimum
shape —the ellipsoid of revolution:

r(z) = r0

√
1 − z2/l2. (7.6)

We show that relation (7.6) is the exact solution of the optimization problem considered if Eq. (4.4) is used
instead of the simplified equation (7.1). Indeed, substitution of expression (7.6) into Eq. (4.4) leads to the following
relation [see also formulas (4.5) and (4.7)]:

p(z) = − 2πσ

1 + ν

z

Λ0 − 2
. (7.7)

Here

Λ0 = 2 ln
( 2l

r0

)
− 1

2(1 − ν)
.

Substitution of expressions (7.6) and (7.7) into relation (7.3) yields
r2
0

l2

(
2 ln

( 2l

r0

)
− 1

2(1 − ν)
− 2

)
=

σ

(1 + ν)σ0
. (7.8)

The transcendental equation (7.8) allows us to determine the value of the parameter r0 in formula (7.6).
Finally, we show that the ellipsoidal shape of the reinforcing bar (7.6) is also optimal if we take into account

the fiber deformation in the asymptotic model constructed, which is defined by the relations

p(z)
[
2 ln

( 2l

r(z)

)
− 1

2(1 − ν)
+ ln

(
1 − z2

l2

)]
+ (Jp)(z) =

2πE

1 + ν

(
w(z) − σz

E

)
,

d

dz

(
Ejπr2(z)

dw

dz
(z)

)
= p(z), z ∈ (−l, l), (7.9)

Ejπr2(±l)
dw

dz
(±l) = 0.

In this case, the uniform strength condition of the bar becomes
1

πr2(z)

(
Ejπr2(z)

dw

dz
(z)

)
= σ0. (7.10)

We set
p(z) = −p0z/l, w(z) = w0z/l. (7.11)

Then, in view of (7.6) and (7.11), relations (7.9) are satisfied exactly if the following equalities hold:
p0

l

(
2 ln

( 2l

r0

)
− 1

2(1 − ν)
− 2

)
=

2πE

1 + ν

( σ

E
− w0

l

)
, 2πEjw0

r2
0

l2
= p0. (7.12)

Substitution of expressions (7.6) and (7.11) into Eq. (7.10) leads to the equation
Ejw0/l = σ0. (7.13)

Eliminating the parameters p0 and w0 from system (7.12), (7.13), we have the following equation for the
parameter r0:

r2
0

l2

(
2 ln

( 2l

r0

)
− 1

2(1 − ν)
− 2

)
=

σ

(1 + ν)σ0
− E

(1 + ν)Ej
. (7.14)

Equation (7.14) implies that accounting for the deformation of the reinforcing bar leads to a decrease in the
parameter r0.

Conclusions. The shape optimization problem was solved by constructing an asymptotic model for defor-
mation of a rigid inclusion of variable section in an elastic medium based on the uniform strength criterion. The
optimum shape of the reinforcing rigid fiber was found to be an ellipsoid. Fibers of finite length (frequently modeled
by prolate ellipsoids) are used as reinforcing elements in modern composite materials (see, for example, a review
[21]). As is known, the greatest reinforcing effect is produced by inclusions that have much higher rigidity (than
that of the matrix).
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